End Presentation


TWiki Slide Show
Next
Stepping Motors

Lecture 8

Uli Raich

UCC semester 2017/2018

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 1 of 6





















TWiki Slide Show
Next
The 27BJY-48 stepper motor an its ULN-2803 driver module
stepping.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 2 of 6





















TWiki Slide Show
Next
Stepping Motors versus DC Motors
While DC motors simply spin when they are powered,

stepping motors can be moved in defined steps and thus positioned very precisely.

They contain 2 coils which can be powered in positive or negative

direction making the current flow in normal or reverse direction

and thus creating magnetic fields of opposite polarity

The rotor has a series of magnets (16 in case of the 28BYJ-48 which we are using)

with alternating opposite polarization.

A north pole followed by a south pole followed by a north pole and so on.

The motor base has 2*16 teeth which can be polarized as

north or south poles depending on the direction of the coil current.

Here is the data sheet of the 28BYJ-48

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 3 of 6





















TWiki Slide Show
Next
The Driver Card
The maximum current that a GPIO pin on the Raspberry Pi can deliver is 60 mA

which is insufficient to power the motor coils.

We therefore need a driver circuit (Darlington stage) to amplify

this current. In our case we use the ULN-2803 chip

The little PCB has 4 LEDs on it to show which of the 2 coils is

powered and in which direction. This is very useful to demonstrate which signals

are sent to the motor and it illustrates nicely the functioning of the motor.

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 4 of 6





















TWiki Slide Show
Next
Connecting the Driver to the Motor
connections.png

We can see from the connections that when powering the pink line

the coil current is flowing in one direction while when

powering the orange line it is flowing in the opposite direction

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 5 of 6





















TWiki Slide Show
Next
Motor Movement
First we power the first coil in such a way the the first tooth has a

south pole and the second one a north pole, which

makes the rotor (whose north magnet is considered) moves to the first tooth.

Then we switch off the first coil and power the second coil such that

the first tooth of the lower row has a south pole.

This makes the rotor move to this tooth.

Now switch off the second coil and switch the first one on again,

however this time with reverse current. The second tooth of the

upper row now has the south pole

(the poles are inversed with respect to the first step).

Now we switch on only the second coil with inverse current to make

the rotor move to the forth tooth. From now on the whole cycle repeats.

step1.png step2.png step3.png step4.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 6 of 6





















First slide Previous End Presentation






























-- Uli Raich - 2017-10-16

Comments

I Attachment History Action Size Date Who Comment
PNGpng connections.png r1 manage 29.9 K 2017-10-16 - 13:58 UnknownUser  
PNGpng step1.png r1 manage 4.8 K 2017-10-16 - 13:41 UnknownUser  
PNGpng step2.png r1 manage 4.7 K 2017-10-16 - 13:41 UnknownUser  
PNGpng step3.png r1 manage 4.8 K 2017-10-16 - 13:41 UnknownUser  
PNGpng step4.png r1 manage 4.6 K 2017-10-16 - 13:41 UnknownUser  
PNGpng stepping.png r1 manage 182.9 K 2017-10-16 - 12:46 UnknownUser  

This topic: Embedded_Systems > WebHome > LectureSlides > Lecture9:SteppingMotors
Topic revision: r1 - 2017-10-16 - uli
This site is powered by the TWiki collaboration platform Powered by PerlCopyright © 2008-2024 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback