End Presentation


TWiki Slide Show
Next
Setting up and IoT

Session 2: Micropython and

Hardware access

Uli Raich

Formally CERN, Geneva, Switzerland

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 1 of 64





















TWiki Slide Show
Next
The WeMos D1 mini CPU card
esp8266.png wemosEsp32.png

ESP8266

cost: 2.21 Euros

ESP32

cost: 4.1o Euros

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 2 of 64





















TWiki Slide Show
Next
CPU Pinout
esp8266Pinout.png esp32Pinout-v2.png
ESP8266 ESP32
Please note: The pin numbers IOxx on the ESP32 correspond

to the GPIO pin numbers

The pins in the white fields go to the WeMos D1 mini bus

and are also available on the ESP8266

The other pins are only accessible on the ESP32 CPU card

The pin numbers Dx do not correspond to GPIO pin numbers!

Please refer to the next slide for correspondence

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 3 of 64





















TWiki Slide Show
Next
CPU pinouts for reference
cpuPinouts.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 4 of 64





















TWiki Slide Show
Next
Meaning of pins on ESP8266
  • GPIO: General Purpose Input Output.
    Drives a single digital line which
    can be programmed input or output
  • SCL/SDA: The I2C bus:a 2 wire bus
    interfacing sensors or actuators to the CPU

  • SCL,MISO,MOSI,SS: SPI
    the Serial Peripheral Interface.
    Used fast communication with external device
esp8266PinMeaning.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 5 of 64





















TWiki Slide Show
Next
Meaning of pins on ESP32
esp32-pinout-chip-ESP-WROOM-32.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 6 of 64





















TWiki Slide Show
Next
How to program the processor
esp8266Programming.png Several development tools are available:
  • ESP_IDF: The official Espressif development tool.
    Includes a gcc compiler for the ESP8266 and the ESP32

Please see:
https://docs.espressif.com/projects/esp-idf/en/latest

  • The Arduino IDE
    Needs extensions for these processors
    and the different CPU boards

see:

https://docs.espressif.com/projects/esp-idf/en/latest

  • MicroPython

see:
https://micropython-docs-esp32.readthedocs.io/en/esp32_doc

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 7 of 64





















TWiki Slide Show
Next
Flashing the code
esptool.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 8 of 64





















TWiki Slide Show
Next
esptool
  • esptool is called from the Makefiles in ESP-IDF
  • esptool is used when we upload code from the Arduino IDE to the processor flash
  • esptool is used with Micropython IDE on uPyCraft

    installs Micropython onto the processor flash
In the above cases the use of esptool is hidden to us.

We can however also execute esptool directly.

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 9 of 64





















TWiki Slide Show
Next
How to write a Micropython program?
First we need a Micropython interpreter!

You find the sources here:

https://github.com/micropython/micropython/

In the repository you find ports for the ESP8266 and the ESP32.

In order to compile the code you need the ESP-IDF and its cross compilers

The code compiles into a binary file (firmware-combined.bin) which contains a boot loader and the interpreter.

This binary must be uploaded and flashed.

For documentation of the ESP8266 port of Micropython look at

https://docs.micropython.org/en/latest/esp8266/tutorial/index.html

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 10 of 64





















TWiki Slide Show
Next
How to communicate with the Micropython interpreter?
We use a serial connection passing through the micro USB connection.

As soon as we connect the processor card to the PC we see the

UART bridge and a new device: dev/ttyUSB0 is created.

This device is used to communicate with the Micropython REPL.

lsusb.png

You see the command prompt and you can interact with Micropython. But … how to upload scripts?

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 11 of 64





















TWiki Slide Show
Next
What is REPL?

repl.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 12 of 64





















TWiki Slide Show
Next
The communication tools: minicom
minicom.png

You see the command prompt and you can interact with Micropython.

But … how to upload scripts?

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 13 of 64





















TWiki Slide Show
Next
The command line tool ampy
ampy.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 14 of 64





















TWiki Slide Show
Next
IDE for Micropython: uPyCraft
uPyCraft.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 15 of 64





















TWiki Slide Show
Next
uPyCraft
uPyCraft is a rather complete Integrate Development Environment (IDE)

which lets you

  • Access the REPL

  • Create directories on the Micropython file system

  • Upload scripts

  • Syntax check scripts

  • Run scripts

  • Install Micropython on your processor board

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 16 of 64





















TWiki Slide Show
Next
Flashing Micropython
This has already been done for you! However, it is easy if you want to do it

at home with a new processor board.

Compiling a new version of Micropython is substantially harder but also perfectly possible.

updateFirmware.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 17 of 64





















TWiki Slide Show
Next
uPyCraft(2)
uPyCraft is based on QT4 and is available for Linux, Windows and Mac.

It is written in PyQt4 the Python language binding to Qt4.

The Linux version did not work for me when running Ubuntu 18.04 or later.

I found a version based on PyQt5 (new version of QT) which was even worse.

I tried to correct as much as I could to make the PyQt5 version usable on Linux:

https://github.com/uraich/uPyCraft-Qt5

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 18 of 64





















TWiki Slide Show
Next
Thonny
thonny.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 19 of 64





















TWiki Slide Show
Next
Thonny (2)
Thonny is an IDE for Python which has provisions for Micropython.

Under Tools → Options button you can select the type of

Python interpreter you intend to use.

thonny_uP.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 20 of 64





















TWiki Slide Show
Next
!IoT Hello World program
A “Hello World” program, just printing “Hello World” on the screen

does not look very exciting.

However, this is generally used to verify that the infrastructure

Compiler, linker, downloader, flash program

are working correctly

In embedded systems printing can be quite complex

and a blinking LED is used instead.

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 21 of 64





















TWiki Slide Show
Next
Switching on and off a LED
The ESP8266 and the ESP32 have a “user LED” connected to GPIO 2.

How do we control this LED?

  • Define that the LED is connected to GPIO 2

  • Program this pin as output

  • Write a logic 1 to the pin to switch it on

  • Write a logic 0 to the pin to switch it off

  • The logic state may be inverted if the LED is active low

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 22 of 64





















TWiki Slide Show
Next
Micropython hardware functions
hardwareFunctions.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 23 of 64





















TWiki Slide Show
Next
The machine.Pin class
pinClass.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 24 of 64





















TWiki Slide Show
Next
Switch the LED on, version 1
ledControl1.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 25 of 64





















TWiki Slide Show
Next
Switch the LED on, version 2
ledControl2.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 26 of 64





















TWiki Slide Show
Next
The blinking LED
Now we put the code into a script and run it

blinkingLed.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 27 of 64





















TWiki Slide Show
Next
Changing the light intensity
The LED is connected to a digital line which can only be set to 0 or Vcc.

How can we change the light intensity and dim the LED?

The light intensity depends on the average current flowing through the LED.

The answer is PWM: pulse width modulation.

pwm.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 28 of 64





















TWiki Slide Show
Next
PWM in Micropython
pwm_uP.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 29 of 64





















TWiki Slide Show
Next
Our PWM implementation
pwmImpl.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 30 of 64





















TWiki Slide Show
Next
The WS2812B LED
A more complex LED:

  • rgb LED used in LED chains.

  • each ws18b12 contains the 3 colored LEDs and a controller.

  • Can be cascaded and individually addressed, depending on its position in the chain

  • Needs precise timing

  • To use it we pass through the neopixel library built into micropython

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 31 of 64





















TWiki Slide Show
Next
!WS2812B timing
For all the details on the ws2812b look at

https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf

24 bit of colour data puts 2e24 colours at your disposal

Coding of a single bit

ws2812Bits.png

The control word:

ws2812ControlWord.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 32 of 64





















TWiki Slide Show
Next
Cascading the WS2812B

ws2812Chain.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 33 of 64





















TWiki Slide Show
Next
Using the neopixel library
neopixel.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 34 of 64





















TWiki Slide Show
Next
… and our code
We have a single neopixel connected to

GPIO pin 4 (ESP8266)

or

GPIO pin 21 (ESP32)

This code works on both CPUs!

neopixelCode.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 35 of 64





















TWiki Slide Show
Next
The I2C bus
I2C stands for Inter-Integrated-Circuit. It was invented by Philips Semiconductor

in 1982. Slow, short distance.

Quite a number of sensors in the "WeMos D1 sensor shield collection use the I2C bus

  • SHT30 temperature and humidity sensor
  • DS1307 real time clock
  • The BMP180 barometric pressure and temperature sensor

  • The SSD1306 OLED (Organic Light Emitting Diode) display

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 36 of 64





















TWiki Slide Show
Next
The physical bus
The CPU (master) connects to the sensors (slaves) through

2 digital lines:

  • SCL: the clock
  • SDA: the data

i2cBus.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 37 of 64





















TWiki Slide Show
Next
!I2C start and stop sequence
When the master want to talk to the slave it issues a start sequence

It terminates the transfer with a stop sequence

i2cStartStop.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 38 of 64





















TWiki Slide Show
Next
!I2C addressing
When talking to a slave the master sends a seven bit address

followed by a read/write bit

This allows to access at most 128 devices

i2cAddress.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 39 of 64





















TWiki Slide Show
Next
!I2C data transfer
Data is transmitted 8 bits at a time followed by an acknowledge bit.

If acknowledge is low, transfer ok, otherwise: send stop sequence

i2cData.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 40 of 64





















TWiki Slide Show
Next
!I2C write cycle
  • Send start sequence
  • Send I2C address and R/W bit low
  • Send internal register number
  • Send data byte
  • Optionally send further data bytes
  • Send stop sequence

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 41 of 64





















TWiki Slide Show
Next
!I2C read cycle
  • Send start sequence
  • Send slave address with R/W low
  • Send address of internal register
  • Send a start sequence again
  • Send slave address with R/W high
  • Read data byte
  • Send stop sequence

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 42 of 64





















TWiki Slide Show
Next
!I2C in Micropython
i2c_uP.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 43 of 64





















TWiki Slide Show
Next
Scanning the I2C bus
i2cScan.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 44 of 64





















TWiki Slide Show
Next
The SHT30 digital temperature and relative humidity sensor
The SHT30 is a digital temperature and humidity sensor based on the I2C bus

Here is its data sheet.

Temperature precision: +- 0.3 °C

Relative humidity: +- 3 %

Works on 2.4V – 5.5 V

sht30Block.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 45 of 64





















TWiki Slide Show
Next
A look at the SHT30 driver
https://iotworkshop.africa/pub/AFNOG/HardwareAccessAndMicropython/sht30.py.txt

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 46 of 64





















TWiki Slide Show
Next
Reading out the SHT30
sht30Code.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 47 of 64





















TWiki Slide Show
Next
Results from the SHT30
sht30Results.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 48 of 64





















TWiki Slide Show
Next
Where to find the demo code
While for the course we only use the CPU and 2 sensor shields:

  • ESP8266 CPU (a more powerful ESP32 CPU exists)
  • SHT30 temperature and humidity sensor
  • Ws2812B rgb LED (neopixel) there are many more available on the market.

    We have a dozen such shields here for demo.

    All demo programs can be found at:

    https://github.com/uraich/MicroPython_IoTDemos

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 49 of 64





















TWiki Slide Show
Next
!WeMos D1 mini sensor and actuator shields (1)
wemosButton.png wemosWS2812.png wemosOLED.png
Pushbutton WS2812 cascadable rgb LED SSD1306 OLED display
wemosDS18B20.png wemosDHT11.png wemosLedMatrix.png
DS118B20 temperature sensor DHT11 temperature and relative humidity sensor 8x8 LED Matrix

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 50 of 64





















TWiki Slide Show
Next
Wemos D1 mini sensor and actuator shields (2)
wemosBuzzer-v2.png wemosDataLogger-v2.png wemosSHT30.png
Passive Buzzer Data Logger SHT30 temperature and humidity sensor
tripleBase.png proto.png
triple base my prototype board: LED + photo resistor

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 51 of 64





















TWiki Slide Show
Next
Cost
cost.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 52 of 64





















TWiki Slide Show
Next
Pinouts of shields
shieldPins.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 53 of 64





















TWiki Slide Show
Next
Documentation for the demo programs
Demo programs for all the shields are available on github:

https://github.com/uraich/MicroPython_IoTDemos

A short description of every program can be found in the README

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 54 of 64





















TWiki Slide Show
Next
The data logger

The data logger features a DS1307 Real Time Clock (RTC) backed up by a battery

An SD card socket also provided.

This allows to store large amounts of data locally

The RTC keeps the time and measurements can be supplied with a time tag

Programs to set and read the RTC are provided.

One of the programs setting the RTC gets the time from and NTP server

such that manual specification of the current date and time are not needed.

wemosDataLogger-v2.png
https://github.com/uraich/MicroPython_IoTDemos/tree/master/drivers/ds1307

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 55 of 64





















TWiki Slide Show
Next
The push button shield
pushbuttonCode.png wemosButton.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 56 of 64





















TWiki Slide Show
Next
!DS18B20 shield
ds18b20Code.png wemosDS18B20.png
   

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 57 of 64





















TWiki Slide Show
Next
SSD1306 48x64 OLED display
This one is also an I2C device


It provides 48*64 pixels and allows to

  • Write a few characters of text
  • Do simple graphics
The ssd1306 class inherits from the


framebuf class included in Micropython such that all

drawing methods of the framebuf are available for drawing:


https://docs.micropython.org/en/latest/library/framebuf.html


For an example see:

https://github.com/uraich/MicroPython_IoTDemos/tree/master/drivers/oled

wemosOLED.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 58 of 64





















TWiki Slide Show
Next
The DHT11 shield
dht11Code.png wemosDHT11.png
The DHT11 is a digital temperature
and relative humidity sensor. It uses
a proprietary protocol of
communication with its controlling
host implemented in the
dht.DHT11 class

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 59 of 64





















TWiki Slide Show
Next
The LED matrix

The LED matrix has 8x8 LEDs on it, which can individually be switched on or off.

In addition to the mled class which takes care of the communication between the host

and the device and which has classes to clear the display,

set a pixel on or off and to change the brightness,

I wrote a class matrix which takes a number 0..64 and

lights this number of LEDs starting from bottom left

wemosLedMatrix.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 60 of 64





















TWiki Slide Show
Next
The buzzer

This shield implements a passive buzzer.

A passive buzzer takes a frequency(an active buzzer takes a signal level)

and produces a sound at this frequency.


This means that the frequency can be changed and a tune can be played.

In

https://github.com/uraich/MicroPython_IoTDemos/tree/master/drivers/buzzer

you will find a program interpreting songs on

RTTTL (Ring Tone Text Transfer Language)

and playing these on the buzzer

A small song library is also provided

wemosBuzzer-v2.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 61 of 64





















TWiki Slide Show
Next
The prototype module

This is a home build module featuring a photo-resistor

measuring the light intensity impinging on it.

It provides an analogue value converted to digital

by the ADC on the WeMos D1 CPU

Please note that the ESP8266 has a single 10 bit ADC

while the ESP32 has 3 12 bit ADCs.

A MUX provides up to 18 analogue channels


The light intensity can be changed with an LED

proto.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 62 of 64





















TWiki Slide Show
Next
The triple base
This module allows to easily stack a rather larger number of shields to a sandwich.

Make sure however that the GPIO lines used by the modules do not clash

tripleBase.png

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 63 of 64





















TWiki Slide Show
Next
Exercises

Now it is up to

You

to do the work!


The exercises are here:

https://afnog.iotworkshop.africa/do/view/AFNOG/Session2

First slide Previous Next Last slide
COPYRIGHT © 2024 by the contributing authors
Slide 64 of 64





















First slide Previous End Presentation






























Uli Raich - 2019-05-13

Comments

I Attachment History Action Size Date Who Comment
Unknown file formatodp afnog19-ws-session2.odp r1 manage 6431.5 K 2019-05-14 - 09:01 UliRaich  
PNGpng ampy.png r1 manage 100.7 K 2019-05-14 - 11:42 UliRaich  
PNGpng blinkingLed.png r1 manage 79.9 K 2019-05-14 - 12:17 UliRaich  
PNGpng cost.png r1 manage 43.6 K 2019-06-09 - 15:02 UliRaich  
PNGpng cpuPinouts.png r1 manage 34.1 K 2019-05-13 - 20:32 UliRaich  
PNGpng dht11Code.png r1 manage 54.5 K 2019-05-14 - 16:44 UliRaich  
PNGpng ds18b20Code.png r1 manage 64.8 K 2019-05-14 - 15:33 UliRaich  
PNGpng esp32-pinout-chip-ESP-WROOM-32.png r1 manage 137.4 K 2019-05-14 - 09:50 UliRaich  
PNGpng esp32Pinout-v2.png r1 manage 151.2 K 2019-05-14 - 09:01 UliRaich  
PNGpng esp8266.png r1 manage 116.1 K 2019-05-13 - 20:27 UliRaich  
PNGpng esp8266PinMeaning.png r2 r1 manage 155.3 K 2019-05-14 - 09:43 UliRaich  
PNGpng esp8266Pinout.png r1 manage 176.4 K 2019-05-13 - 20:41 UliRaich  
PNGpng esp8266Programming.png r1 manage 108.3 K 2019-05-14 - 09:59 UliRaich  
PNGpng esptool.png r1 manage 114.3 K 2019-05-14 - 11:28 UliRaich  
PNGpng hardwareFunctions.png r1 manage 159.5 K 2019-05-14 - 12:17 UliRaich  
PNGpng i2cAddress.png r1 manage 1.3 K 2019-05-14 - 14:09 UliRaich  
PNGpng i2cBus.png r1 manage 1.6 K 2019-05-14 - 14:09 UliRaich  
PNGpng i2cData.png r1 manage 1.3 K 2019-05-14 - 14:25 UliRaich  
PNGpng i2cScan.png r1 manage 134.8 K 2019-05-14 - 14:32 UliRaich  
PNGpng i2cStartStop.png r1 manage 2.7 K 2019-05-14 - 14:09 UliRaich  
PNGpng i2c_uP.png r1 manage 248.6 K 2019-05-14 - 14:26 UliRaich  
PNGpng ledControl1.png r1 manage 19.8 K 2019-05-14 - 12:17 UliRaich  
PNGpng ledControl2.png r1 manage 19.8 K 2019-05-14 - 12:18 UliRaich  
PNGpng lsusb.png r1 manage 73.3 K 2019-05-14 - 11:48 UliRaich  
PNGpng minicom.png r1 manage 17.2 K 2019-05-14 - 11:42 UliRaich  
PNGpng neopixel.png r1 manage 165.5 K 2019-05-14 - 12:46 UliRaich  
PNGpng neopixelCode.png r1 manage 79.9 K 2019-05-14 - 12:46 UliRaich  
PNGpng pinClass.png r1 manage 160.1 K 2019-05-14 - 12:20 UliRaich  
PNGpng pinControl2.png r1 manage 19.8 K 2019-05-14 - 12:18 UliRaich  
PNGpng proto.png r1 manage 114.2 K 2019-05-14 - 15:14 UliRaich  
PNGpng protoBoard.png r1 manage 882.8 K 2019-05-14 - 15:13 UliRaich  
PNGpng pushbuttonCode.png r1 manage 65.6 K 2019-05-14 - 15:33 UliRaich  
PNGpng pwm.png r1 manage 51.4 K 2019-05-14 - 12:27 UliRaich  
PNGpng pwmImpl.png r1 manage 116.7 K 2019-05-14 - 12:31 UliRaich  
PNGpng pwm_uP.png r1 manage 24.6 K 2019-05-14 - 12:31 UliRaich  
PNGpng repl.png r1 manage 20.2 K 2019-05-14 - 11:45 UliRaich  
PNGpng shieldPins.png r1 manage 68.3 K 2019-05-14 - 15:13 UliRaich  
Texttxt sht30.py.txt r1 manage 6.5 K 2019-05-14 - 14:43 UliRaich  
PNGpng sht30Block.png r1 manage 27.3 K 2019-05-14 - 14:41 UliRaich  
PNGpng sht30Code.png r1 manage 85.0 K 2019-05-14 - 14:47 UliRaich  
PNGpng sht30Results.png r1 manage 168.5 K 2019-05-14 - 14:47 UliRaich  
PNGpng thonny.png r1 manage 148.1 K 2019-05-14 - 12:05 UliRaich  
PNGpng thonny_uP.png r1 manage 31.0 K 2019-05-14 - 12:05 UliRaich  
PNGpng tripleBase.png r1 manage 196.1 K 2019-05-14 - 15:11 UliRaich  
PNGpng uPyCraft.png r1 manage 164.1 K 2019-05-14 - 11:43 UliRaich  
PNGpng updateFirmware.png r1 manage 27.3 K 2019-05-14 - 11:59 UliRaich  
PNGpng wemosButton.png r1 manage 113.3 K 2019-05-14 - 14:55 UliRaich  
PNGpng wemosBuzzer-v2.png r1 manage 108.9 K 2019-05-14 - 15:21 UliRaich  
PNGpng wemosBuzzer.png r1 manage 252.7 K 2019-05-14 - 15:11 UliRaich  
PNGpng wemosDHT11.png r1 manage 113.4 K 2019-05-14 - 14:55 UliRaich  
PNGpng wemosDS18B20.png r1 manage 71.5 K 2019-05-14 - 14:55 UliRaich  
PNGpng wemosDataLogger-v2.png r1 manage 72.7 K 2019-05-14 - 15:21 UliRaich  
PNGpng wemosDataLogger.png r1 manage 263.9 K 2019-05-14 - 15:11 UliRaich  
PNGpng wemosEsp32.png r1 manage 213.3 K 2019-05-13 - 20:29 UliRaich  
PNGpng wemosLedMatrix.png r1 manage 109.8 K 2019-05-14 - 14:55 UliRaich  
PNGpng wemosOLED.png r1 manage 139.2 K 2019-05-14 - 14:55 UliRaich  
PNGpng wemosSHT30.png r1 manage 102.9 K 2019-05-14 - 15:11 UliRaich  
PNGpng wemosWS2812.png r1 manage 144.2 K 2019-05-14 - 14:55 UliRaich  
PNGpng ws2812Bits.png r1 manage 11.9 K 2019-05-14 - 12:42 UliRaich  
PNGpng ws2812Chain.png r1 manage 19.9 K 2019-05-14 - 12:42 UliRaich  
PNGpng ws2812ControlWord.png r1 manage 7.6 K 2019-05-14 - 12:42 UliRaich  

This topic: AFNOG > WebHome > AFNOGWorkshop2019 > AFNOG-2019Slides > WorkshopSlides > HardwareAccessAndMicropython
Topic revision: r7 - 2019-06-11 - UliRaich
This site is powered by the TWiki collaboration platform Powered by PerlCopyright © 2008-2024 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback